资源类型

期刊论文 2427

会议视频 103

会议信息 3

会议专题 1

年份

2024 4

2023 207

2022 284

2021 241

2020 202

2019 172

2018 163

2017 136

2016 106

2015 138

2014 89

2013 76

2012 65

2011 84

2010 82

2009 76

2008 71

2007 77

2006 56

2005 43

展开 ︾

关键词

能源 52

可持续发展 18

可再生能源 11

核能 11

碳中和 10

节能 10

遗传算法 9

优化 7

神经网络 7

工程管理 6

能源安全 6

预测 6

医学 5

环境 5

2035 4

信息技术 4

可持续性 4

多目标优化 4

新能源 4

展开 ︾

检索范围:

排序: 展示方式:

Analysis of energy saving optimization of campus buildings based on energy simulation

Dingding TONG, Jing ZHAO

《能源前沿(英文)》 2013年 第7卷 第3期   页码 388-398 doi: 10.1007/s11708-013-0273-7

摘要: The energy consumption of campus buildings has specific characteristics, because of the concentrated distribution of people’s working time and locations that change in line with distinct seasonal features. The traditional energy system design and operation for campus buildings is only based on the constant room temperature, such as 25°C in summer and 18°C in winter in China, not taking into consideration the real heating or cooling load characteristics of campus buildings with different functions during the whole day and whole year, which usually results in a lot of energy waste. This paper proposes to set different set-point temperatures in different operation stages of public and residential campus buildings to reduce the heating and cooling design load for energy station and total campus energy consumption for annual operation. Taking a campus under construction in Tianjin, China as an example, two kinds of single building models were established as the typical public building and residential building models on the campus. Besides, the models were simulated at both set-point room temperature and constant room temperature respectively. The comparison of the simulation results showed that the single building energy saving method of the peak load clipping could be used for further analysis of the annual energy consumption of campus building groups. The results proved that the strategy of set-point temperature optimization could efficiently reduce the design load and energy consumption of campus building groups.

关键词: campus buildings     set-point temperature     energy simulation     energy saving optimization    

Optimizing environmental insulation thickness of buildings with CHP-based district heating system basedon amount of energy and energy grade

Yumei ZHANG, Pengfei JIE, Chunhua LIU, Jing LI

《能源前沿(英文)》 2022年 第16卷 第4期   页码 613-628 doi: 10.1007/s11708-020-0700-5

摘要: The increase of insulation thickness (IT) results in the decrease of the heat demand and heat medium temperature. A mathematical model on the optimum environmental insulation thickness (OEIT) for minimizing the annual total environmental impact was established based on the amount of energy and energy grade reduction. Besides, a case study was conducted based on a residential community with a combined heat and power (CHP)-based district heating system (DHS) in Tianjin, China. Moreover, the effect of IT on heat demand, heat medium temperature, exhaust heat, extracted heat, coal consumption, carbon dioxide (CO ) emissions and sulfur dioxide (SO ) emissions as well as the effect of three types of insulation materials (i.e., expanded polystyrene, rock wool and glass wool) on the OEIT and minimum annual total environmental impact were studied. The results reveal that the optimization model can be used to determine the OEIT. When the OEIT of expanded polystyrene, rock wool and glass wool is used, the annual total environmental impact can be reduced by 84.563%, 83.211%, and 86.104%, respectively. It can be found that glass wool is more beneficial to the environment compared with expanded polystyrene and rock wool.

关键词: optimum environmental insulation thickness     heat medium temperature     energy grade     extracted heat     exhaust heat    

Xinjiang energy-based desert management project

Jishan HE

《工程管理前沿(英文)》 2019年 第6卷 第4期   页码 587-591 doi: 10.1007/s42524-019-0075-7

关键词: desert governance     comprehensive utilization of new energy     modern agriculture     the Belt and Road Initiative     green development    

Exploration and Practice in Systems Engineering Management of Large Coal-based Integrated Energy Projects

Wen Ling

《工程管理前沿(英文)》 2015年 第2卷 第2期   页码 173-177 doi: 10.15302/J-FEM-2015029

摘要: With an analysis of current development of China’s coal industry, this paper, in the perspectives of concept innovation, technological innovation and management innovation, introduces the exploration and engineering practice by Shenhua Group in coordination with coal and the environment, co-development of coal and the associated resources as well as clean and efficient utilization of coal. Based on systems engineering of Shenhua’s coal-based integrated energy projects, the paper also presents practice and experience in technological and management innovation.

关键词: coal-based     integrated energy     systems engineering     exploration     practice    

Synergetic Management Theory for Coal-Based Energy Engineering and the Engineering Practice of Shenhua

Wen Ling

《工程管理前沿(英文)》 2016年 第3卷 第1期   页码 1-8 doi: 10.15302/J-FEM-2016005

摘要: To deal with problems in synergetic development of coal-based energy engineering, this paper, guided by the philosophy of engineering, proposes the synergetic management philosophy of “factors coordination, systems synergy, dynamic optimization and three-dimension planning.” The paper also establishes the synergetic management system characterized by systems factor synergy, resource-environment synergy and systems boundary extension and supported by the “two-wheel driven” management innovation and technological innovation. In addition, the paper presents a multi-objective dynamic optimization model for energy engineering, designed based on Shenhua’s own engineering practice, to analyze Pareto optimal solution in three scenarios: best resource allocation, minimal environmental impact and maximal value creation. This provides important reference to synergetic development strategies and decision-making in engineering management.

关键词: coal-based energy     engineering synergetic management     two-wheel driven innovation     Shenhua engineering    

Pathway to energy technical innovation and commercialization based on Internet plus DES

Huiping LIU

《能源前沿(英文)》 2016年 第10卷 第1期   页码 65-78 doi: 10.1007/s11708-015-0391-5

摘要: The distributed energy system (DES) is a type of energy cascade utilization on the client side or close to the client, and it has become an important option of global energy transformation. In China, based on the experience of demonstration projects, the DES is now being commercialized. Under the new opportunity of energy production and consumption promoted by the national “Internet Plus” action plan, the development of the DES was reviewed in this paper; four categories of market demand and five key issues for DES deployment were analyzed; five types of potential DES users and five key points of technical path implementation proposed based on many years of engineering practices and hundreds of project case studies were proposed. 4E elements should be used to evaluate and choose the project and lead the innovation model of DES by energy production and consumption revolution with the sustainable development of the Internet plus DES. The future innovation models include intelligent energy modularity and menu-type services with the demands of the client side, and the kind of new thinking for DES services that “you are in charge of your own energy production and consumption, while we are also at service when needed for installation and maintenance.” The aim of innovation mode is to give the energy sovereign back to the people, and form a perfect Internet plus DES ecosystem.

关键词: “Internet Plus”     distributed energy system (DES)     business model     technical innovation     commercialization     DES industry ecosystem     energy revolution    

Human power-based energy harvesting strategies for mobile electronic devices

Dewei JIA, Jing LIU

《能源前沿(英文)》 2009年 第3卷 第1期   页码 27-46 doi: 10.1007/s11708-009-0002-4

摘要: Energy problems arise with the proliferation of mobile electronic devices, which range from entertainment tools to life saving medical instruments. The large amount of energy consumption and increasing mobility of electronic devices make it urgent that new power sources should be developed. It has been gradually recognized that the human body is highly flexible in generating applicable power from sources of heat dissipation, joint rotation, enforcement of body weight, vertical displacement of mass centers, and even elastic deformation of tissues and other attachments. These basic combinations of daily activities or metabolic phenomena open up possibilities for harvesting energy which is strong enough to power mobile or even implantable medical devices which could be used for a long time or be recharged permanently. A comprehensive review is presented in this paper on the latest developed or incubating electricity generation methods based on human power which would serve as promising candidates for future mobile power. Thermal and mechanical energy, investigated more thoroughly so far, will particularly be emphasized. Thermal energy relies on body heat and employs the property of thermoelectric materials, while mechanical energy is generally extracted in the form of enforcement or displacement excitation. For illustration purposes, the piezoelectric effect, dielectric elastomer and the electromagnetic induction couple, which can convert force directly into electricity, were also evaluated. Meanwhile, examples are given to explain how to adopt inertia generators for converting displacement energy via piezoelectric, electrostatic, electromagnetic or magnetostrictive vibrators. Finally, future prospects in harvesting energy from human power are made in conclusion.

关键词: mobile electronic device     human power     energy harvesting     micro/miniaturized generator     battery     green energy    

Review on cellulose paper-based electrodes for sustainable batteries with high energy densities

《化学科学与工程前沿(英文)》 2023年 第17卷 第8期   页码 1010-1027 doi: 10.1007/s11705-023-2307-y

摘要: Powering the future, while maintaining strong socioeconomic growth and a cleaner environment, is going to be one of the biggest challenges faced by mankind nowadays. Thus, there is a transition from the use of fossil fuels to renewable energy sources. Cellulose, the main component of paper, represents a unique type of bio-based building blocks featuring exciting properties: low-cost, hierarchical fibrous structures, hydrophilicity, biocompatible, mechanical flexibility, and renewability, which make it perfect for use in paper-based sustainable energy storage devices. This review focuses on lithium-ion battery application of celluloses with cellulose at different scales, i.e., cellulose microfibers, and nanocellulose, and highlights the new trends in the field. Recent advances and approaches to construct high mass loading paper electrodes toward high energy density batteries are evaluated and the limitations of paper-based cathodes are discussed. This will stimulate the use of natural resources and thereby the development of renewable electric energy systems based on sustainable technologies with low environmental impacts and carbon footprints.

关键词: cellulose     paper electrodes     Li-ion batteries     high energy density    

Decoupling optimization of integrated energy system based on energy quality character

Shixi MA, Shengnan SUN, Hang WU, Dengji ZHOU, Huisheng ZHANG, Shilie WENG

《能源前沿(英文)》 2018年 第12卷 第4期   页码 540-549 doi: 10.1007/s11708-018-0597-4

摘要:

Connections among multi-energy systems become increasingly closer with the extensive application of various energy equipment such as gas-fired power plants and electricity-driven gas compressor. Therefore, the integrated energy system has attracted much attention. This paper establishes a gas-electricity joint operation model, proposes a system evaluation index based on the energy quality character after considering the grade difference of the energy loss of the subsystem, and finds an optimal scheduling method for integrated energy systems. Besides, according to the typical load characteristics of commercial and residential users, the optimal scheduling analysis is applied to the integrated energy system composed of an IEEE 39 nodes power system and a 10 nodes natural gas system. The results prove the feasibility and effectiveness of the proposed method.

关键词: integrated energy system     energy quality character     optimization     electric power system     natural gas system    

Real prospects for the development of power technologies based on renewable energy sources in Poland

Sławomir DYKAS, Artur SZYMAŃSKI, Xiaoshu CAI

《能源前沿(英文)》 2017年 第11卷 第2期   页码 168-174 doi: 10.1007/s11708-017-0474-6

摘要: In Poland more than 40% of the power units have been operating for over 40 years now and more than 10% are over 50 years old, which indicates a high degree of decrease in the value of the energy sector. An analysis of the energy market shows that every year a new power plant should be built with a capacity of 1000 MW to ensure the national energy security. An energy market research indicates that in Poland the structure of energy production is changing in recent years—the share of fossil (solid) fuels in electricity and heat production was approximately 88% in 2009, while in 2004 it reached 93%. According to the analysis of the market, it can be seen that conventional energy, mainly based on coal and lignite, has been the most important segment of the sector for a long time.?In this paper the prospects for the development of power technologies based on renewable energy sources (RES) in Poland are presented.

关键词: renewable energy sources     energy sector     energy mix     Poland    

Study on the Path of “Near-zero Emission” Coal-based Clean Energy Ecosystem Development

Zhang Yu-zhuo

《工程管理前沿(英文)》 2014年 第1卷 第1期   页码 37-41 doi: 10.15302/J-FEM-2014007

摘要: Developing a "near-zero emission" coal-based clean energy ecosystem bears great significance for the sustainable development of clean energy in China and the world at large. This article delves into the development strategy, implementation pathways and key priorities of China's "near-zero emission" coal-based clean energy ecosystem, and in turn proposes specific measures to underpin the development and implementation of such system.

关键词: near-zero emission     clean energy ecosystem     study on the path    

IoT sensor-based BIM system for smart safety barriers of hazardous energy in petrochemical construction

《工程管理前沿(英文)》 2022年 第9卷 第1期   页码 1-15 doi: 10.1007/s42524-021-0160-6

摘要: The accidental release of hazardous energy is one of the causes of construction site accidents. This risk is considerably increased during petrochemical plant construction because the project itself is complex in terms of process, equipment, and environment. In addition, a general construction safety barrier hardly isolates and controls site hazardous energy effectively. Thus, this study proposes an Internet of Things (IoT) sensor-based building information modeling (BIM) system, which can be regarded as a new smart barrier design method for hazardous energy in petrochemical construction. In this system, BIM is used to support the identification of on-site hazardous energy, whereas IoT is used to collect the location of on-site personnel in real time. A hazardous energy isolation rule is defined to enable the system to generate a smart barrier on the web terminal window, thereby ensuring the safety of on-site person. This system has been applied to a large-scale construction project in Sinopec for one year and accumulated substantial practical data, which supported the idea about the application of sensor and BIM technology in construction. The related effects of the system on hazardous energy management are also presented in this work.

关键词: IoT     BIM     smart safety barrier     hazardous energy management     petrochemical construction    

Harvesting biomechanical energy in the walking by shoe based on liquid metal magnetohydrodynamics

Dan DAI, Jing LIU, Yixin ZHOU

《能源前沿(英文)》 2012年 第6卷 第2期   页码 112-121 doi: 10.1007/s11708-012-0186-x

摘要: A liquid metal magnetohydrodynamics generation system (LMMGS) was proposed and demonstrated in this paper for collecting parasitic power in shoe while walking. Unlike the conventional shoe-mounted human power harvesters that use solid coil and gear mechanism, the proposed system employs liquid metal (Ga In Sn ) as energy carrier, where no moving part is requested in magnetohydrodynamics generators (MHGs). While walking with the LMMGS, the foot alternately presses the two liquid metal pumps (LMPs) which are respectively placed in the front and rear of the sole. As a result, the liquid metal in the LMPs (LMP I and II) is extruded and flows through the MHGs (MHG I and II) in which electricity is produced. For a comparison, three types of LMMGSs (LMMGS A, B and C) were built where all the parts are the same except for the LMPs. Furthermore, performances of these LMMGSs with different volume of injected liquid metal were tested respectively. Experimental results reveal that both the output voltage and power of the LMMGS increase with the volume of injected liquid metal and the size of the LMPs. In addition, a maximum output power of 80 mW is obtained by the LMMGS C with an efficiency of approximately 1.3%. Given its advantages of no side effect, light weight, small size and reliability, The LMMGS is well-suited for powering the wearable and implantable micro/nano device, such as wearable sensors, drug pumps and so on.

关键词: human energy harvesting     liquid metal     wearable magnetohydrodynamics generator     parasitic power in shoe    

Smoothing ramp events in wind farm based on dynamic programming in energy internet

Jiang LI, Guodong LIU, Shuo ZHANG

《能源前沿(英文)》 2018年 第12卷 第4期   页码 550-559 doi: 10.1007/s11708-018-0593-8

摘要:

The concept of energy internet has been gradually accepted, which can optimize the consumption of fossil energy and renewable energy resources. When wind power is integrated into the main grid, ramp events caused by stochastic wind power fluctuation may threaten the security of power systems. This paper proposes a dynamic programming method in smoothing ramp events. First, the energy internet model of wind power, pumped storage power station, and gas power station is established. Then, the optimization problem in the energy internet is transformed into a multi-stage dynamic programming problem, and the dynamic programming method proposed is applied to solve the optimization problem. Finally, the evaluation functions are introduced to evaluate pollutant emissions. The results show that the dynamic programming method proposed is effective for smoothing wind power and reducing ramp events in energy internet.

关键词: energy internet     wind power     ramp events     dynamic programming    

QPSO-ILF-ANN-based optimization of TBM control parameters considering tunneling energy efficiency

《结构与土木工程前沿(英文)》 2023年 第17卷 第1期   页码 25-36 doi: 10.1007/s11709-022-0908-z

摘要: In recent years, tunnel boring machines (TBMs) have been widely used in tunnel construction. However, the TBM control parameters set based on operator experience may not necessarily be suitable for certain geological conditions. Hence, a method to optimize TBM control parameters using an improved loss function-based artificial neural network (ILF-ANN) combined with quantum particle swarm optimization (QPSO) is proposed herein. The purpose of this method is to improve the TBM performance by optimizing the penetration and cutterhead rotation speeds. Inspired by the regularization technique, a custom artificial neural network (ANN) loss function based on the penetration rate and rock-breaking specific energy as TBM performance indicators is developed in the form of a penalty function to adjust the output of the network. In addition, to overcome the disadvantage of classical error backpropagation ANNs, i.e., the ease of falling into a local optimum, QPSO is adopted to train the ANN hyperparameters (weight and bias). Rock mass classes and tunneling parameters obtained in real time are used as the input of the QPSO-ILF-ANN, whereas the cutterhead rotation speed and penetration are specified as the output. The proposed method is validated using construction data from the Songhua River water conveyance tunnel project. Results show that, compared with the TBM operator and QPSO-ANN, the QPSO-ILF-ANN effectively increases the TBM penetration rate by 14.85% and 13.71%, respectively, and reduces the rock-breaking specific energy by 9.41% and 9.18%, respectively.

关键词: tunnel boring machine     control parameter optimization     quantum particle swarm optimization     artificial neural network     tunneling energy efficiency    

标题 作者 时间 类型 操作

Analysis of energy saving optimization of campus buildings based on energy simulation

Dingding TONG, Jing ZHAO

期刊论文

Optimizing environmental insulation thickness of buildings with CHP-based district heating system basedon amount of energy and energy grade

Yumei ZHANG, Pengfei JIE, Chunhua LIU, Jing LI

期刊论文

Xinjiang energy-based desert management project

Jishan HE

期刊论文

Exploration and Practice in Systems Engineering Management of Large Coal-based Integrated Energy Projects

Wen Ling

期刊论文

Synergetic Management Theory for Coal-Based Energy Engineering and the Engineering Practice of Shenhua

Wen Ling

期刊论文

Pathway to energy technical innovation and commercialization based on Internet plus DES

Huiping LIU

期刊论文

Human power-based energy harvesting strategies for mobile electronic devices

Dewei JIA, Jing LIU

期刊论文

Review on cellulose paper-based electrodes for sustainable batteries with high energy densities

期刊论文

Decoupling optimization of integrated energy system based on energy quality character

Shixi MA, Shengnan SUN, Hang WU, Dengji ZHOU, Huisheng ZHANG, Shilie WENG

期刊论文

Real prospects for the development of power technologies based on renewable energy sources in Poland

Sławomir DYKAS, Artur SZYMAŃSKI, Xiaoshu CAI

期刊论文

Study on the Path of “Near-zero Emission” Coal-based Clean Energy Ecosystem Development

Zhang Yu-zhuo

期刊论文

IoT sensor-based BIM system for smart safety barriers of hazardous energy in petrochemical construction

期刊论文

Harvesting biomechanical energy in the walking by shoe based on liquid metal magnetohydrodynamics

Dan DAI, Jing LIU, Yixin ZHOU

期刊论文

Smoothing ramp events in wind farm based on dynamic programming in energy internet

Jiang LI, Guodong LIU, Shuo ZHANG

期刊论文

QPSO-ILF-ANN-based optimization of TBM control parameters considering tunneling energy efficiency

期刊论文